EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

نویسندگان

  • Leonie Schnell
  • Ann-Katrin Mittler
  • Mirko Sadi
  • Michel R. Popoff
  • Carsten Schwan
  • Klaus Aktories
  • Andrea Mattarei
  • Domenico Azarnia Tehran
  • Cesare Montecucco
  • Holger Barth
چکیده

The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain.

By screening possible ADP-ribosyltransferase activities in culture supernatants from various Clostridium species, we have found one Clostridium difficile strain (CD196) (isolated in our laboratory) that is able to produce, in addition to toxins A and B, a new ADP-ribosyltransferase that was shown to covalently modify cell actin as Clostridium botulinum C2 or Clostridium perfringens E iota toxin...

متن کامل

Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90.

Some hypervirulent strains of Clostridium difficile produce the binary actin-ADP-ribosylating toxin C. difficile transferase (CDT) in addition to Rho-glucosylating toxins A and B. It has been suggested that the presence of CDT increases the severity of C. difficile-associated diseases, including pseudomembranous colitis. CDT contains a binding and translocation component, CDTb, that mediates th...

متن کامل

Identification of the cellular receptor of Clostridium spiroforme toxin.

Clostridium spiroforme produces the binary actin-ADP-ribosylating toxin CST (C. spiroforme toxin), which has been proposed to be responsible for diarrhea, enterocolitis, and eventually death, especially in rabbits. Here we report on the recombinant production of the enzyme component (CSTa) and the binding component (CSTb) of C. spiroforme toxin in Bacillus megaterium. By using the recombinant t...

متن کامل

Tailored Cyclodextrin Pore Blocker Protects Mammalian Cells from Clostridium difficile Binary Toxin CDT

Some Clostridium difficile strains produce, in addition to toxins A and B, the binary toxin Clostridium difficile transferase (CDT), which ADP-ribosylates actin and may contribute to the hypervirulence of these strains. The separate binding and translocation component CDTb mediates transport of the enzyme component CDTa into mammalian target cells. CDTb binds to its receptor on the cell surface...

متن کامل

Clostridium difficile Toxin CDT Induces Formation of Microtubule-Based Protrusions and Increases Adherence of Bacteria

Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase), which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016